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A numerical study of the standard Numerov method for the solution of the Schrddinger 
equation is done by looking at the errors of the solution and the limits of precision for this 
method. Comparison is made with the results of an improved method that traces back all 
sources of errors, minimizing them and making the error of each of the sources of comparable 
magnitude to the others in order to optimize the computing time. A reduction factor of more 
than 100 is found for the computing time, given a certain accuracy. On the other hand, fixing 
a certain computational time, a substantial increase in accuracy is gained. The improved 
method proves particularly suitable for the study of weakly bound states, potentials with dis- 
continuities, singular potentials, or those mixing atomic and nuclear degrees of 
freedom. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

In the present paper we analyze the popular shooting method which uses the 
Numerov procedure to integrate numerically the Schrodinger equation. In doing so 
we point out the different sources of error of the numerical procedure, then make a 
numerical study of the error induced from those sources and the limits to precision 
that the method has as a consequence. 

A brief exposition is then made of an improved method, which traces back all 
sources of error in the numerical integration and carefully selects in a coordinated 
way the initial conditions for the integration of the equation, as well as the step, to 
have all sources of error of the same order of magnitude. 

In the standard method the step h and the maximum value of the radius I~, 
where we stop the integration, are taken independently without much knowledge of 
which of the two sources of error is larger: the numerical errors accumulated in the 
integration because of the finiteness of h, or the errors propagated to the numerical 
solution because of the approximate solution taken at h or rM. As a consequence it 
is not clear how to proceed most efficiently to improve the solution, nor we have 
much idea of the accuracy of the solution in a general case. 

The new method developed has a scale of precision, given by an integer number p 
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and provides a solution with increasing accuracy as the index of precision is 
increased. The method optimizes the solution since all sources of error are required 
to be of the same order of magnitude, and the initial conditions, as well as the step, 
are simultaneously changed, when more accuracy is required, in such a way as to 
have all sources of error decreasing in the same proportion. 

The efficiency gained is remarkable. As a general rule we can say that if the stan- 
dard method gives a certain accuracy in a certain time, the improved method 
provides three to four significant digits more in the same time. Conversely, given a 
certain precision, the improved method requires from lO@lOOO times less time than 
the standard method for current potentials. In particular cases of weakly bound 
states and others, the improved method provides seven significant figures when the 
standard method fails to provide even one. Also when the standard method reaches 
the limit of precision, indepedently of how small the step h is made or how far r,,, 
goes, the improved method normally provides 334 more significant digits. 

The new method proves to be especially suited for the study of weakly bound 
states (- 10 orders of magnitude smaller than the scale of energies) or for 
calculating thresholds of coupling constants in order to have a bound state. The 
method is equally suited to investigate corrections to atomic properties from the 
presence of the nucleus as an object with internal structure (finite size effects, etc.). 

2. THE STANDARD NUMEROV METHOD 

We briefly review the Numerov method [ 1 ] and its application to the eigenvalue 
problem of the Schriidinger equation [2] to see the sources of error. Let us start 
with the radial Schrodinger equation, 

where 

u(r) = rR(r), 
2mE 

E=F, 

2mV(r) 
u(r) = 7, 

Z(l+ 1) 
g(r)=u(r)+7--E. 

(2) 

The Numerov method provides an algorithm that, given the solution in the 
points n - 1, n of a given regular partition of step h, allows us to calculate the 
solution at the point n + 1. Concretely, 

u,+, = (2 + (10/12) h2&) un - Cl- ww gn- 1) %- 1 + 

1 - (h2/12) gn + 1 

o(p) 
2 (3) 
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where the error in u, + , is given by 

6u cc u~h6 = h6[( g’” + 7g”g + 4g’* + g3)u + (4,“’ + 6gg’) u’]. (4) 

To determine the eigenvalues of the problem, we integrate from r= 0 up to a 
matching point r = r, (out integration) and from a maximum value of the radius r,,,, 
inwards, up to rc (in integration). With the boundary conditions u(r),,o + 0, 

u(r),+ m --* 0, the values of E for which the two solutions coincide at r = rc (up to an 
arbitrary normalization constant) give the eigenvalues of the problem. To deter- 
mine these eigenvalues we introduce the function G(E), 

Hence the zeros of G(E) give us the eigenvalues of the problem. To speed up the 
numerical procedure the Newton method is used to reline the eigenvalue when we 
are close to a zero of G(E). If G(.s)%O, then 8s such that G(E + 6s) = 0 is given by 

BE = -$$ + O((S&)2). 

The value of G’(E) is provided by the same numerical integration by means of the 
standard formula 

dG(E) -= -- 
d& 

To start the out integration at r =O, we choose the approximate solution 
u(O)=O, u(h)=h ‘+ ’ based on the asymptotic behaviour u(r)ccr’+ ’ for r -+ 0 and ) 
standard potentials [3,4]. At large values of r, starting at rM, we normally 
approximate the solution by a standard first-order WKB solution, provided that rM 
is beyond the last turning point. The choice is not unique, but we must always rely 
on approximate solutions to start the numerical integration. 

This short review allows us to see the sources of error in this numerical 
integration: 

(1) Error from the Numerov method: Ram one point to another we 
introduce an uncertainty of order 0(h6). By accumulation of errors this turns out to 
be an error of O(h4) for the solution, because it is a second-order differential 
equation [ 111. 

(2) The solution u(0) = 0, u(h) = h’+’ can be considered exact, up to an 
irrelevant normalization contant. However, we note that the Numerov method can 
produce troubles by starting from these two points. Indeed, imagine I> 5, then 
u(2h) from (3) will be approximately (2/r)‘+ ‘; but the error, uuih6, is also of order 
O(h’+ ‘) and hence the error induced in u(2h) can be of the same order of 
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magnitude as the solution itself. These errors will inevitably propagate to the 
solution at larger r. 

(3) The WKB solution at rz Y, is also approximate and the errors of this 
solution will have some repercussion in the accuracy of the method. 

(4) The evaluation of E by means of (6) requires the knowledge of G’(E) 
calculated by means of (7). The numerical integration of (7) will also introduce 
some errors. On the other hand, we only know the solution up to r,,,, and not up to 
00 as required there. The contribution jr”, u!,,(r) dr, which is not included in G’(F), is 
another source of error to be taken into account. 

(5) When the number of points taken in the integration becomes appreciable, 
then we must also consider the rounding errors of the computer. 

(6) If the potential has a discontinuity, when we go in the numerical 
integration from two points to the left of the discontinuity to another one to the 
right of it, the Numerov method assumes a continuity of the function and its 
derivatives, and hence takes the values of U” of the left to calculate the function to 
the right of the discontinuity. The error induced is of order 0(/r*) (odd derivatives 
do not appear in the Numerov method) instead of O(h6). 

3. IMPROVED METHOD 

We have carefully analyzed all these sources of error and made useful corrections 
to minimize the errors and have a proper control of their magnitudes. The selection 
of the initial conditions, the step and the other corrections are done in such a way 
that errors induced from each one of these sources are all of the same order of 
magnitude. All these modifications are implemented in a computer program that for 
a given input precision (index p = 1 - 7, (8); 7, (8) for maximum precision) 
automatically sets up those conditions and gives as a result the eigenfunctions and 
eigenvalues to the desired precision. 

The details of the corrections are rather lengthy and have been published 
elsewhere [S]. The aim of this paper is not to show the details of the new method, 
but rather to prove the limits in the precision of the standard method, which have 
been normally overlooked, with the implicit assumption that more precision can be 
gained by simply making the step h smaller; the only limitation being the precision 
of the computer. 

For these purposes, we have selected a few potentials and studied the precision of 
the eigenvalues by changing h and r,,,. The results are then compared to those 
obtained with the improved method. 

However, to understand the reasons for the improvement we will summarize 
briefly the ingredients of the new method: 

(1) The method splits the region of integration in a minimum of ten different 
regions. In each one of them, according to (4) we choose g3h% as representative of 
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the error induced from one step to the other . The accumulative errors in U, will be 
of order of O(h4). We introduce an index of precision p, such that 

lgl h2d5-P, (8) 

and then h is chosen in each region such that 1 gl max h* = 5 -p. This allows the use of 
different steps in different regions, thus economizing work without loss of precision. 
The relative error in the wave function from the accumulative errors is of the order 
of (gh’)* and hence of order 5 -2p. With values o f p - - 8, the errors fall inside the last 
two digits of a 16 digit computer, which will be generally lost due to the computer 
rounding errors. Hence p = 7, 8 normally gives the optimal precision with this 
method. 

(2) We could choose r,,, and the initial conditions such that 

Gu(r,)/u(r,)-O(h4)-5~2P. (9) 

However, this would grossly overestimate the errors from this source and force us 
unnecessarily and dangerously into the classically forbidden region, where the wave 
function decreases very fast. The reason for this is that it neglects the healing 
properties of the solution. To see this, consider the Schrodinger equation written in 
the form 

where 

S’(r) + S*(r) = g(r), (10) 

which is the Ricatti form of the radial equation. 
S(r) also has an accumulative error of O(h4), as has been proved in [S]. If the 

good solution S(r), for a certain eigenvalue, has an error k!?(r), Eq. (10) will then 
give 

W(r) + 2S(r) &S(r) + as(r)* = 0. 

We can now impose that 

(12) 

Wrh4) 
( > Sk,) 

* - O(h4) 9 (13) 

which is much less restrictive than (9). Thus the last term in (12) can be neglected 
and the integration of the equation leads us to 

4rM)* 
Wr) = Wr,) us’ 
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which shows the propagation of the errors and the healing properties. If r < rM, 
then 16S(r)l < [AS( since u(r) grows very fast in the classically forbidden region 
when r decreases. The matching point rr for the in and out integrations is relevant 
for the evaluation of the eigenvalues, as shown in Section 2. Thus, we wish 
&S(r)-O(h4) for r relatively close to r,. A compromise is made at a point rb to the 
right of the turning point, close enough to r,, but which allows an easy evaluation 
of (14) in terms of the WKB approximation. Thus r,,,, is chosen such that the con- 
ditions (13) and &S(r,)-O(h4) are fulfilled. By doing that, the smallness of the 
error &S(r,) is equally tied to the smallness of the initial error (13), that provides 
O(h*) for &S(r,)/S(r,), and the healing factor in (14) that provides an extra 0(/z*). 
This, of course, forces an automatic change of r,,,, when h is changed to have both 
conditions fulfilled. We also choose the WKB approximation for the solution at r,,,, 
with terms up to 4th order. The formulas used for the WKB method up to 4th 
order can be seen in the Appendix. 

(3) At short distances, r -+ 0, we make a change of variable and function 
[6, 71 given by 

r=ex, u(r) = exi2q(x). (15) 

With this change, the Schrodinger equations is 

cp”b) =dx) 44x) (16) 

with 

g(x) e (0 -6) ezx + (I + l/2)*. (17) 

When x + -co (r -+ 0), the function g(x) has a finite positive limit, and thus for 
x + -co, we will have a classically forbidden region in this new variable. This 
allows us to use similar techniques to those exposed before, with explicit account of 
the healing properties, and a special treatment of the approximate solution at small 
r that goes beyond the r’+’ approximation. 

(4) As we have seen in Eqs. (6) and (7), we need the function G’(E) to 
evaluate the eigenvalues. Thus, we need the integral 

1 Cx 
Iin = 7 s %(r,+f) rM 

4,,(r) dr, (18) 

but we have not evaluated Ui,,(r) beyond r,,,. We can express ( 18) in terms of S(r) 
as 

Iin = fin dr exp j’ 2Si,(r’) dr’, (18’) 
TM ‘M 

and then use an iterative part integration to express (18’) in terms of known quan- 
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tities at rM. By differentiating (18’) with respect to T,,,, and reordening terms we can 
now write formally 

(18”) 

which allows for a series expansion in terms of the derivation operator, formally 
equivalent to a repeated part integration. The interest of this expansion lies in the 
fact that each term of this expansion is of the order of S,,, Si, S2,..., of the WKB 
expansion. By keeping four terms in (18”) the error induced is again of order O(h4) 
in G’. A similar thing is done for short distances to account for the missing integral 
from 0 to x0, where we start the out integration in the variable x. The rest of the 
integration in (7) is done by using Bode’s formula [S], which has an accumulated 
error of order 0(h6). 

(5) Discontinuities are specially treated by considering them as boundaries of 
some of the regions in which we divide the integration domain. If we reach the 
point n (the discontinuity) from the left, we calculate S, and then use this S,, to start 
the integration in the right. Since we need two points to start the Numerov 
integration, we have to generate U, + 1, which is done appropriately by using techni- 
ques similar to the Numerov method to generate u,+ i to the accuracy of O(P). 

(6) The method allows for an estimate of the total error, since G(E) which 
involves U’ will be of order O(h4), thus the dimensionless variable G(E). G’(E) will be 
of order 0(h4), and hence by means of (6) we can obtain an estimate of the error. 
This estimate is normally conservative, being, as a general rule, about one order of 
magnitude larger than the actual error. 

4. RESULTS AND DISCUSSION 

We have selected a few potentials and compared the results of the standard 
method to those of our method. 

(a) Coulomb potential: 

V(r)= -p, a>0 (19) 

with the spectrum 
a2 

‘kJ= - 4(k + /)2’ Z=O, l,..., k=l,2 ,..., (20) 

where k counts the number of nodes (the origin included), and I is the angular 
momentum. 

In Table I we show the results for a = 10. We select a few eigenvalues and write 
the corresponding value of r at the turning point together with the accuracy of the 
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standard method for given couples of r,,,, (R,,,) and h (in the table we write instead 
the number of points). We should note that in the improved method, we select only 
the index of precision p, and then everything is determined automatically. The first 
line for I= 0, k = 1 shows that the standard method (SM), for rM = 1.0, has a limit 
of precision at a relative error of 10 - , 3 independent of the number of points. This 
clearly illustrates the error coming from the initial conditions, which cannot be 
overcome in spite of the smallness of the step h. If we increase rM, we gain some 
precision. However, note that with even a smaller rM and a larger h (third line), the 
optimized method (OM) provides four more significant digits. If we compare the 
SM to the OM in the fourth line, we see again that for about the same r,,,, and h, 
the OM provides three more significant digits. The fifth line tells us instead that for 
a given precision, i.e., 10 -9, the OM requires 50 times fewer points (hence an 
economy of a factor 50 in time) to get the eigenvalue to even more precision. A 
similar consequence is obtained from comparison of the third line of the SM with 
the second one of the OM. We should note, however, that the combination of r,,, 
and the number of points in the SM is already optimized since we have used the 
results of our OM as a guideline. This is certainly an aid that we cannot use in 
general; hence it is very unlikely that the right couple is used in a general problem, 
which would have as a consequence unnecessary computational time without any 
gain in precision. 

The second block shows results for 1= 0, k = 5. The first line shows that with a 
smaller r,,,, and larger h the OM gives 6 more significant digits than the SM. Com- 
parison of the first line of the SM with the second line of the OM shows that with a 
factor 10 less time, the OM still offers two more significant digits than the SM. 
Comparison of the second line of the SM with the third one of the OM shows that 
with 100 times less points, we get about the same precision. 

The third block corresponds to 1= 5, k = 1. The second line shows that the OM 
gives the same precision as the SM in a factor 300 less time. The third line shows 
again than the OM gives the same precision with a factor 100 less time. 

The good results of the SM in the first line are rather accidental. In spite of what 
we said in point (2) of Section 2, values of I= 5 do not seem to introduce much 
extra error than smaller values of I, which should be attributed to the excellent 
healing properties of the wave function at small r for 1 large. 

The fourth block shows the results for I = 19, k = 1. The first and second lines 
show that with about the same rM and h the OM provides 3 to 4 more significant 
digits than the SM. However, if we increase the number of points, as in line 3, we 
only gain two significant digits from the OM to the SM. The problems associated 
with 12 5 thus seem more serious for small values of the step h, where the 
optimized method provides a much better result in the same computing time. 
However, if the step is small, the healing properties of the equation increase the 
accuracy of the SM. Comparison of line 3 and 4 of the SM shows that a decrease of 
h does not lead to a better result but makes it actually worse. Comparison of lines 3 
and 5 shows that no extra precision is gained by increasing rM, telling us that the 
absolute limit of precision of the SM is at lo-“. 
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Apart from all considerations taken into account so far, an inspection of the table 
shows that the OM has a maximal precision with two to three more significant 
figures than the SM. Since we rarely require so many significant digits in physical 
problems, it is clear that the best asset of the OM for this simple problem is that it 
can provide a certain accuracy with & of the time of the SM without having to 
worry about the selection of r,,,, and h, which are done automatically for a given 
precision p. 

(b) Yukawa potential: 

V(r) = -2g f$, g > 0. (21) 

The results are shown in Table II. The first block shows results for the eigenvalue 
corresponding to g = 0.9, I= 0, k = 1. Once again the first line shows that the OM 
provides the same accuracy as the SM in 100 times less time than the SM. Com- 
parison of lines 1 and 2 of the SM shows again that an increase in the number of 
points does not provide better precision, but the contrary, and comparison of lines 
1 and 3, that an increase in rM does not lead to a more accurate result either. The 
precision of the SM saturates at 10 ~’ while the OM does it at 10 P9 in one tenth of 
the time. The fact that we get fewer significant digits here than in the Coulomb case 
is due to the fact that the state studied here is weakly bound. 

The second block shows results for g = 2.0, I = 0, k = 1. The first line shows once 
more that for a certain time the OM provides three more significant digits. Com- 
parison of lines 2 and 3 of the SM shows that an increase in r,+, does not give a bet- 
ter result, while comparison of lines 3 and 4 clearly shows that an increase in the 
number of points leads actually to worse results, indicating that we have reached 
the saturation level of the precision. The OM method still provides two more 
significant digits in less computing time. For the “exact” eigenvalues we have used 
the OM and calculated the eigenvalue several times, starting from differential trial 
energies. All figures that appear repeated are considered good. This procedure 
proved, to be extremely reliable when applied to analytically soluble potentials [S]. 

(c) Hulthen potential: 

V(r) = U( 1 - e+) ~ I, U, a>0 (22) 

with exact solution for the s wave [3], 

EkO= (k2-a2V2 - 
4a2k2 ’ 

k < LarUl. (23) 

The results are shown in Table III. The case studied here is the case of a very 
weakly bound state, of order EW 10 ~ lo, when the potential is of order of 10-l. A 
quick inspection of the results with the SM shows clearly that this method is unable 
to provide a single signiticant figure realiably, while the OM provides seven 
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significant digits in this case. The OM thus proves very efficient in the evaluation of 
very weakly bound states and in the related problem of evaluating threshold cou- 
pling constants of a certain potential to have just one bound state, a problem that 
has received some attention in the literature [9]. Our results for this problem [S] 
provide the coupling constants with relative error 10 -9, while the special pertur- 
bative methods [9], based on Pade approximants, or the variational methods [lo] 
give a relative error of 10 ~ ‘-10 ~ ‘. 

(d) Square well: In the second block of Table III we illustrate the case of a 
square well potential to show the errors involved in the case of discontinuities of 
the potential. The results of the SM show a ceiling of precision at 10 -‘when we use 
2 x lo5 points. An increase of the number of points leads to less accurate results. 
The OM provides 6 more significant digits with one tenth of the time. 

(e) Singular potential: We have chosen a potential that goes as r ~’ for small 
radia and which has an exact eigenvalue for I = 0, k = 1. In this case the ceiling of 
precision of the SM is 5 x lo-*, while the OM provides 8 to 9 more significant 
figures in about one tenth of the time. 

In the standard method we have taken a constant step h in the whole range of 
the integration. However, one of the benefits of the OM is that we have taken a dif- 
ferent step h in different regions, hence economizing in computing time. We may 
wonder how much of the success of the OM is due to the use of this variable step. 
To find the answer we have used an improved SM (ISM) with the same partition of 
the integration range as the OM and the same choice for h in each one of the 
regions of the partition. Hence the ISM method and the OM only differ in the 

TABLE IV 

Coulomb Potential 

OM ISM SM 

1 k P R max N (Significant digits) 

0 1 4 1.6 6300 9 6 6 
5 1.9 llooo 10 7 6 
6 2.3 24000 11 8 I 
I 2.9 62000 12 8 8 

0 5 4 
5 
6 
I 

5 1 4 
6 
7 

19 1 2 
4 
I 

21 17000 9 6 5 
29 34ooo 10 7 5 
32 7oooo 12 8 6 
38 160000 13 8 6 

21 
27 
32 

8000 
47000 

13oow 

3500 
19ooo 

37oooo 

9 6 5 
11 10 8 
12 12 11 

130 
150 
250 

8 5 4 
10 7 6 
13 13 12 

931/51/3-4 
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choice of the initial conditions. Thus the ISM still benefits from some of the 
improvements of the OM. 

In Tables IV and V we show the comparative results for the SM, OM, and ISM. 
In Table IV, for the Coulomb potential, we can see in the first and second blocks 
that, with the same number of points and equal choice for R,,,, the ISM provides 
about one more significant digit than the SM, while the OM provides about 4 more 
significant digits than the SM, thus stressing the role played by the initial con- 
ditions. 

The third and fourth blocks show again that for large values of 1 the OM is far 
more efficient than the ISM or SM for a small number of points, while when this 
number is increased, all methods give accurate results. 

In Table V we show the results for the Yukawa, Hulthtn, square, and singular 
potentials. In the first and second blocks for the Yukawa potential we see again that 
the ISM provides about one more significant digit than the SM while the OM 
provides from three to four more signicant digits than the SM. In the case of a 
weakly bound state of the Hulthen potential, the ISM provides a substantial 
improvement over the SM but the OM still provides three more significant digits 
than the ISM. In the case of the square-well potential the ISM provides no 
improvement over the SM while the OM provides 7 more significative digits than 
the SM. In this case the appropriate matching at the discontinuity of the potential, 
used in the OM is the essential factor in the precision of the OM. Finally for the 
singular potential the improvement of the ISM over the SM is small while the OM 
provides 9 more significant digits than the SM. 

Study of Tables IV and V reveals that the proper care of the initial conditions 
taken in the OM is the major factor in the improvements offered by the method. 

TABLE V 

Yukawa and Other Potentials 

OM ISM SM 

g 1 k P 4,m N Significant digits 

0.9 

2.0 

H&h&n 
Square well 
Singular 

potential 

0 1 4 28 
5 30 
I 34 

0 1 4 7 
5 7 
6 9 
I 11 

0 3 7 500 
0 1 7 2.2 

0 1 7 17 

5700 6 
8900 I 

36ooo 9 

6900 8 
11000 9 
25000 10 
61000 11 

83000 7 
36cm 12 

92000 10 

1.5 
5 

1 
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5. CONCLUSIONS 

In this paper we have shown the limits of precision of the standard method for 
the integration of the Schrodinger equation and compared the results to an 
optimized method that has been recently developed. 

The errors of the integration come essentially from the finiteness of the step h and 
from the propagation of the errors of the approximate initial conditions. Because of 
these errors the SM reaches a ceiling of precision at a certain point independently 
of the smallness of h (in fact, the solution becomes worse for smaller values of h 
because of the rounding errors of the computer), while the OM still provides two to 
three more significant digits. 

For particular problems, like weakly bound states, potentials with discontinuities 
or singular potentials that go, such as ar ~’ for small r (a > -$), the OM provides 
from 6 to 8 more significant digits. 

Apart from the higher precision reached by the OM, for potentials of general use, 
such as the Coulomb potential or Yukawa, given a certain computer time, the OM 
generally provides 3 to 4 more significant digits than the SM. Conversely, if a cer- 
tain precision is required, the OM reaches it in & of the time of the SM as an 
average. For the special potentials quoted before the gain in efficiency is even 
higher. All these factors are found in the most favorable situation for the SM when 
an optimal choice of h and r,,,, is done that requires the smallest computational time. 
In general we do not have a precise idea of which combination to take. Generally, 
the computer will do unnecessary work that does not result in a gain of precision. 
The OM selects instead the initial conditions and the step automatically, according 
to the precision required. 

In summary the OM provides a substantial gain in efficiency in the numerical 
solution of the Schrodinger equation with a remarkable reduction of computer time 
for a given precision of the solution, or a much more accurate solution, with the 
same computational time than the SM. The OM method proves especially suited to 
the study of particular problems such as weakly bound states, potentials with dis- 
continuities, singular potentials, thresholds of coupling constants, or potentials with 
two parts where one is a small correction to the other as would be the case in 
problems that mix atomic with nuclear degrees of freedom [S]. 

APPENDIX: WKB FORMULAS UP TO 4rrr ORDER 

In the WKB method the variable S is expanded as a series of terms 

with 

S(r)= f K(r) 
n=O 

(Al) 

(A21 S,(r)= -Jg(r)= -p(r) 
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in the classically forbidden region. A recurrent relation is fulfilled by the terms S,, 

Sk lb-1 + f S,(r) S,-,(r) = 0, n > 0. (A3) 
k=O 

If we define 

1 d” 
4%(r) = - - g(r), 

g(r) dr” 

then we have 

hence in terms of the (p’s, 

&= & (11054$- 1768q+,+448~,cp,+304+64q,). 

The derivatives involved can be calculated numerically. If we define 

- &+4 
gn= g(r) ’ 

n= -2,-l ,...? 2, 

then we have 
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